Fall Insecticide Treatment Timings to Manage Spring Alfalfa Weevil Infestations, 2012-2013: Table 1

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficacy of diatomaceous earth to control internal infestations of rice weevil and maize weevil (Coleoptera: Curculionidae).

Densities of 10, 20, and 30 hard red winter wheat kernels, Triticum aestivum L., were infested with different life stages of the rice weevil, Sitophilus oryzae (L.), mixed with 35 g of wheat treated with 300 ppm of the Protect-It (Mississauga, Ontario, Canada) formulation of diatomaceous earth (DE), and held at 22, 27, and 32 degrees C. A similar test was conducted by exposing densities of 6, 1...

متن کامل

Weevil x Insecticide: Does ‘Personality’ Matter?

An insect's behavior is the expression of its integrated physiology in response to external and internal stimuli, turning insect behavior into a potential determinant of insecticide exposure. Behavioral traits may therefore influence insecticide efficacy against insects, compromising the validity of standard bioassays of insecticide activity, which are fundamentally based on lethality alone. By...

متن کامل

Advanced Complexity Theory Fall 2012 Lecture 15 — November 1 , 2012

Q: Why are we using circuit lower bounds here, as opposed to a claim such as E ̸⊆ P for example? A: The proof of the Nisan-Wigderson pseudorandom generator relies on nonuniformity, by showing that distinguishing a pseudorandom generator implies a circuit for solving a hard problem – this reduction involves hardwiring advice into a circuit in order to solve the hard problem. A contradiction requi...

متن کامل

Math 661 Fall 2013 Homework 1 Solutions

Proof. First suppose that a ∼H b, so that a = bk for some k ∈ H, and let ah (with h ∈ H) be an artibrary element of aH. Then we have ah = bkh = b(kh) ∈ bH, hence aH ⊆ bH. The proof of bH ⊆ aH is similar. Conversely, suppose that aH = bH. Since a ∈ aH = bH we have a = bk for some k ∈ H. Then a−1b = k−1 ∈ H, hence a ∼H b. (d) Prove that the map g 7→ ag is a bijection from H to aH. Proof. Consider...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arthropod Management Tests

سال: 2016

ISSN: 2155-9856,2155-9856

DOI: 10.1093/amt/tsw079